oc-mint/test/test_crypto.cpp

164 lines
4.4 KiB
C++
Raw Normal View History

#include <catch2/catch_test_macros.hpp>
#include "cryptlib.h"
#include "integer.h"
#include "nbtheory.h"
#include "osrng.h"
#include "rsa.h"
#include "sha.h"
#include <iostream>
#include <stdexcept>
CryptoPP::Integer blind_signature(unsigned char *msg,
size_t msg_len,
const CryptoPP::RSA::PublicKey& pub_key,
const CryptoPP::RSA::PrivateKey& priv_key) {
using namespace CryptoPP;
using std::cout;
using std::endl;
AutoSeededRandomPool prng;
// Convenience
const Integer &n = pub_key.GetModulus();
const Integer &e = pub_key.GetPublicExponent();
const Integer &d = priv_key.GetPrivateExponent();
// For sizing the hashed message buffer. This should be SHA256 size.
const size_t sig_size = UnsignedMin(SHA256::BLOCKSIZE, n.ByteCount());
// Scratch
SecByteBlock buff_1, buff_2, buff_3;
SecByteBlock orig(msg, msg_len);
Integer m(orig.data(), orig.size());
cout << "Message: " << std::hex << m << endl;
// Hash message per Rabin (1979)
buff_1.resize(sig_size);
SHA256 hash_1;
hash_1.CalculateTruncatedDigest(buff_1, buff_1.size(), orig, orig.size());
// H(m) as Integer
Integer hm(buff_1.data(), buff_1.size());
cout << "H(m): " << std::hex << hm << endl;
// Alice blinding
Integer r;
do {
r.Randomize(prng, Integer::One(), n - Integer::One());
} while (!RelativelyPrime(r, n));
// Blinding factor
Integer b = a_exp_b_mod_c(r, e, n);
cout << "Random: " << std::hex << b << endl;
// Alice blinded message
Integer mm = a_times_b_mod_c(hm, b, n);
cout << "Blind msg: " << std::hex << mm << endl;
// Bob sign
Integer ss = priv_key.CalculateInverse(prng, mm);
cout << "Blind sign: " << ss << endl;
return ss;
}
TEST_CASE("cryptopp", "[crypto]") {
using namespace CryptoPP;
using std::cout;
using std::endl;
using std::runtime_error;
// Bob artificially small key pair
AutoSeededRandomPool prng;
RSA::PrivateKey priv_key;
priv_key.GenerateRandomWithKeySize(prng, 64U);
RSA::PublicKey pub_key(priv_key);
// Convenience
const Integer &n = pub_key.GetModulus();
const Integer &e = pub_key.GetPublicExponent();
const Integer &d = priv_key.GetPrivateExponent();
// Print params
cout << "Pub mod: " << std::hex << pub_key.GetModulus() << endl;
cout << "Pub exp: " << std::hex << e << endl;
cout << "Priv mod: " << std::hex << priv_key.GetModulus() << endl;
cout << "Priv exp: " << std::hex << d << endl;
// For sizing the hashed message buffer. This should be SHA256 size.
const size_t sig_size = UnsignedMin(SHA256::BLOCKSIZE, n.ByteCount());
// Scratch
SecByteBlock buff_1, buff_2, buff_3;
// Alice original message to be signed by Bob
SecByteBlock orig((const byte *)"secret", 6U);
Integer m(orig.data(), orig.size());
cout << "Message: " << std::hex << m << endl;
// Hash message per Rabin (1979)
buff_1.resize(sig_size);
SHA256 hash_1;
hash_1.CalculateTruncatedDigest(buff_1, buff_1.size(), orig, orig.size());
// H(m) as Integer
Integer hm(buff_1.data(), buff_1.size());
cout << "H(m): " << std::hex << hm << endl;
// Alice blinding
Integer r;
do {
r.Randomize(prng, Integer::One(), n - Integer::One());
} while (!RelativelyPrime(r, n));
// Blinding factor
Integer b = a_exp_b_mod_c(r, e, n);
cout << "Random: " << std::hex << b << endl;
// Alice blinded message
Integer mm = a_times_b_mod_c(hm, b, n);
cout << "Blind msg: " << std::hex << mm << endl;
// Bob sign
Integer ss = priv_key.CalculateInverse(prng, mm);
cout << "Blind sign: " << ss << endl;
// Alice checks s(s'(x)) = x. This is from Chaum's paper
Integer c = pub_key.ApplyFunction(ss);
cout << "Check sign: " << c << endl;
if (c != mm) {
throw runtime_error("Alice cross-check failed");
}
// Alice remove blinding
Integer s = a_times_b_mod_c(ss, r.InverseMod(n), n);
cout << "Unblind sign: " << s << endl;
// Eve verifies
Integer v = pub_key.ApplyFunction(s);
cout << "Verify: " << std::hex << v << endl;
// Convert to a string
size_t req = v.MinEncodedSize();
buff_2.resize(req);
v.Encode(&buff_2[0], buff_2.size());
// Hash message per Rabin (1979)
buff_3.resize(sig_size);
SHA256 hash_2;
hash_2.CalculateTruncatedDigest(buff_3, buff_3.size(), orig, orig.size());
// Constant time compare
bool equal = buff_2.size() == buff_3.size() &&
VerifyBufsEqual(buff_2.data(), buff_3.data(), buff_3.size());
if (!equal) {
throw runtime_error("Eve verified failed");
}
cout << "Verified signature" << endl;
}