ki-backend/README.md
Michael Weimann db8c441f8d
All checks were successful
continuous-integration/drone/push Build is passing
add initial .drone.yml
2021-06-15 18:45:45 +02:00

2.3 KiB

Kompetenzinventar Backend

Build Status

Entwicklung

Abhängigkeiten

Entwicklungsumgebung aufbauen und starten

Ggf. vorher aufräumen

rm data/ki.sqlite
cp env.dev .env
pipenv install --dev
pipenv shell
export FLASK_APP=app.py
flask db upgrade
flask seed
flask run

http://localhost:5000/

Tests ausführen

python -m unittest discover ki

Linting

flake8

Testbenutzer

Für ein Login ohne LDAP werden die Benutzer aus der auth.yml benutzt.

Beispiel-Requests

Beispiele brauchen curl und jq.

curl -s \
    -D "/dev/stderr" \
    http://localhost:5000/skills?search=ph | jq
curl -s \
    -D "/dev/stderr" \
    http://localhost:5000/languages?search=fr | jq
curl -s \
    -D "/dev/stderr" \
    -X POST \
    -H "Content-Type: application/json" \
    -d '{"username": "peter", "password": "geheim"}' \
    http://localhost:5000/users/login | jq
curl -s \
    -D "/dev/stderr" \
    -H "Authorization: Bearer 22e6c5fc-8a5a-440e-b1f4-018deb9fd24e" \
    http://localhost:5000/users/1/profile

Docker

Image bauen

docker build --tag ki_backed .

Container starten

Im Beispiel wird die SQLite Datenbank ./data/ki_backend.sqlite verwendet.

DB-Datei anlegen

touch data/ki_docker.sqlite
chmod a+rw data/ki_docker.sqlite

Container starten

docker run \
    --name=ki_backend \
    -v ${PWD}/data/ki_docker.sqlite:/app/data/ki_docker.sqlite \
    -e SQLALCHEMY_DATABASE_URI='sqlite:///data/ki_docker.sqlite' \
    -p 5000:5000 \
    ki_backend

Skills und Sprachen importieren

docker exec ki_backend sh -c "cd /app && /pyroot/bin/flask seed"

Produktionsumgebung

Für die Produktionsumgebung wird waitress benutzt.

run_prod.py führt die DB Migrationen aus und startet den Server.

Quellen